Estimation for the Multivariate Errors-in-Variables Model with Estimated Error Covariance Matrix
نویسندگان
چکیده
منابع مشابه
COVARIANCE MATRIX OF MULTIVARIATE REWARD PROCESSES WITH NONLINEAR REWARD FUNCTIONS
Multivariate reward processes with reward functions of constant rates, defined on a semi-Markov process, first were studied by Masuda and Sumita, 1991. Reward processes with nonlinear reward functions were introduced in Soltani, 1996. In this work we study a multivariate process , , where are reward processes with nonlinear reward functions respectively. The Laplace transform of the covar...
متن کاملCovariance Matrix Estimation using an Errors-in-Variables Factor Model with Applications to Portfolio Selection and a Deregulated Electricity Market
We propose an errors-in-variables factor model which extends the classical capital asset pricing model (CAPM) to the case where the market returns contain additive noise. Using the model, we propose a method for choosing portfolios of assets, such as U.S. stocks in the S&P 100 and virtual electricity contracts in a regional transmission organization. Virtual electricity contracts relate real-ti...
متن کاملEstimation of observation-error variance in errors-in-variables regression
Assessing the variability of an estimator is a key component of the process of statistical inference. In nonparametric regression, estimating observation-error variance is the principal ingredient needed to estimate the variance of the regression mean. Although there is an extensive literature on variance estimation in nonparametric regression, the techniques developed in conventional settings ...
متن کاملMultivariate Outlier Detection and Robust Covariance Matrix Estimation
In this article, we present a simple multivariate outlier-detection procedure and a robust estimator for the covariance matrix, based on the use of information obtained from projections onto the directions that maximize and minimize the kurtosis coef cient of the projected data. The properties of this estimator (computational cost, bias) are analyzed and compared with those of other robust est...
متن کاملImproved HAC Covariance Matrix Estimation Based on Forecast Errors
We propose computing HAC covariance matrix estimators based on one-stepahead forecasting errors. It is shown that this estimator is consistent and has smaller bias than other HAC estimators. Moreover, the tests that rely on this estimator have more accurate sizes without sacrificing its power.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1984
ISSN: 0090-5364
DOI: 10.1214/aos/1176346502